+ Ответить в теме
Страница 1 из 2 1 2 ПоследняяПоследняя
Показано с 1 по 10 из 15

Тема: тюнинг^техни4еский

Комбинированный просмотр

  1. #1
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию тюнинг^техни4еский

    1. Форсировка двигателя

    Приступая к форсировке готового двигателя, никогда не следует предполагать, будто конструктор упустил возможность получить от двигателя дополнительных 20-30 л. с. и вам остается только произвести несколько магических действии, чтобы извлечь потерянную мощность. Труд форсировщика всегда бывает очень кропотливым и тяжелым. Нет такого узла двигателя, которым можно было бы пренебречь. Каждая отдельная работа по форсировке, будь то регулировка, тщательная подгонка или повышение степени сжатия, возможно, принесет и незначительный эффект, но общие результаты многих часов напряженного труда дадут заметный прирост мощности. Увеличить эффективную мощность двигателя и повысить максимальные обороты его коленчатого вала, что и называется форсировкой двигателя, можно двумя путями:

    а) за счет повышения степени сжатия, улучшающего термический к. п. д.;

    б) за счет увеличения наполнения цилиндров, повышающих среднее эффективное давление.

    Первый способ форсировки ограничивается антидетонационными свойствами существующих топлив, так что пределом для повышения степени сжатия обычно является детонация, которая, создавая ударную нагрузку на детали кривошипно-шатунного механизма, угрожает их механической прочности и вызывает падение мощности. Возможность повышения степени сжатия двигателя, кроме того, в значительной мере зависит от формы камеры сгорания и для разных конструкций неодинакова. Наилучшей формой камеры принято считать полусферическую или шатровую. Ошибочно предполагать, что каждое последующее повышение степени сжатия на определенную величину дает одинаковый прирост мощности. Наибольший выигрыш в мощности можно получить в диапазоне степеней сжатия от 6 до 8; от 8 до 10 эффект будет уже меньшим и т. д. Форсировка за счет улучшения наполнения цилиндров горючей смесью, т. е. повышение коэффициента наполнения, представляет широкое поле деятельности и может достигаться различными конструктивными мероприятиями. В первую очередь следует указать на следующие:

    - изменение фаз газораспределения в сторону увеличения продолжительности тактов впуска и выпуска при наибольшем перекрытии тактов за счет опережения начала впуска и запаздывания конца выпуска;

    - увеличение размера тарелок у впускных клапанов и расширение подводящих каналов в блоке для получения наименьшей скорости потока горячей смеси в них, а также соответствующее увеличение тарелок выпускных клапанов;

    - установление длины впускного трубопровода для получения резонансного подпора смеси и выбор формы трубопровода, исключающей повороты в направлении потока смеси, вызывающие инерционные потери;

    - выбор конструкции и числа карбюраторов, снижение температуры поступающей в цилиндры горючей смеси и другие способы увеличения заряда.

    Наименее исследованной областью является влияние формы впускного трубопровода и его длины, хотя значение конструкции трубопровода в работе двигателя весьма велико.

    Впускной трубопровод. Выбор наилучшей конструкции впускного трубопровода и формы каналов, подводящих смесь к цилиндрам, является трудной задачей. Она усложняется тем, что иногда приходится удовлетворять самые противоречивые требования, решение которых возможно только опытным путем. Однако форсировка серийного двигателя за счет изменения системы или схемы питания для улучшения наполнения является наиболее доступной спортсменам областью работы. Основными требованиями к впускному трубопроводу являются:

    а) длина впускного клапана от карбюратора до поршня для каждого цилиндра должна быть одинаковой и по возможности короткой или специально подобранной для использования инерции входящего потока.

    б) форма трубопровода: диаметр, изгибы, углы и внутренняя поверхность каналов должны оказывать наименьшее сопротивление потоку смеси, обеспечивать одинаковое качество по составу и равное распределение смеси по цилиндрам, т. е. исключающее местное обеднение или обогащение;

    в) перемены в направлении движения горючей смеси и встречные токи должны быть минимальными, чтобы не вызывать инерционных потерь и отсасывания смеси от клапанов;

    г) пульсация потока, вызываемая насосным действием поршней, должна быть по возможности с равномерными интервалами. Полезно, чтобы начало очередного всасывания было в момент инерционного подпора;

    д) температура смеси в отдельных отводах трубопровода должна быть одинаковой.

    У многоцилиндровых двигателей для повышения наполнения цилиндров обычно применяют установку нескольких карбюраторов, в количестве часто соответствующем числу цилиндров. В этом случае будет получено равновеликое наполнение каждого отдельного цилиндра, что само по себе уже приведет к увеличению мощности. При замене одного карбюратора несколькими особое внимание надо обратить на качественный состав горючей смеси, подаваемый карбюраторами, так как уменьшение количества воздуха, проходящего через каждый карбюратор, вследствии увеличения их числа, приводит к обеднению смеси.

    Впускные трубопроводы могут быть с пологими и с прямоугольными изгибами. Пологие изгибы создают меньшие сопротивления течению потока, но на поворотах вызывают смещение неиспарившиxХxХxХ частиц топлива в смеси к крайним цилиндрам, что приводит к обеднению смеси в ближе расположенных цилиндрах. Кроме того, при пологих изгибах не распыленная часть топлива может подтекать в ближайшие каналы, что также может вызывать неравномерное питание. Прямоугольные повороты в трубопроводах с карманами устраняют эти явления, но создают большие сопротивления течению смеси. Поэтому конструкция трубопровода по большей части является результатом компромиссного решения.
    Последнее время у некоторых двигателей, в целях увеличения наполнения цилиндров, стали применяться насадки, удлиняющие смесительную трубу (наиболее простое средство изменения длины) для создания перед карбюратором инерционного подпора за счет сформированного потока воздуха. Сечение впускных трубопроводов может быть круглым или квадратным. Квадратное сечение применяется для увеличения поверхности испарения осаждающегося топлива, а также для уменьшения склонности потока смеси к завихрениям по спирали (при длинном трубопроводе). Внутренние поверхности трубопровода и впускного капала блока должны быть гладкими, желательно полированными.
    Диаметр впускного трубопровода выбирается в зависимости от диаметра цилиндров и скорости поршня с таким расчетом, чтобы скорость потока горючей смеси, при работе двигателя на полном дросселе, при максимальной мощности, не превышала 50 м/сек. Чтобы увеличить плотность заряда, воздух, подводимый к впускным патрубкам карбюраторов, должен быть достаточно холодным. Для этого рекомендуется устраивать специальную вентиляцию подкапотного пространства.

    Выпускной трубопровод. Конструкция выпускного трубопровода, влияя на степень очистки цилиндров от отработавших газов, также оказывается связанной с наполнением цилиндров горючей смесью. Конструкция выпускного трубопровода должна отвечать следующим требованиям:

    а) скорость отработавших газов в выпускной трубе не должна быть выше 30-35 м/сек, для чего диаметр трубы делают равным 0,5-0,6 диаметра цилиндра или 1,5 сечения впускного трубопровода;

    б) выходящие отработавшие газы одного цилиндра не должны создавать противодавления для газа другого (соседнего) по работе цилиндра, что может иметь место у многоцилиндровых двигателей, имеющих такты большой продолжительности.

    Наиболее приемлемым для многооборотных двигателей скоростных автомобилей является выпускной трубопровод с отдельными трубами для каждого цилиндра. При этом желательно, чтобы непосредственно у блока цилиндров трубы имели прямое направление и изгибались для соединения в общую трубу на некотором отдалении от блока. Расположение выпускного трубопровода на двигателе должно исключать возможность подогрева стенки блока.

    В заключение данного раздела приводятся рекомендуемый порядок и последовательность действий по улучшению работы и форсировке двигателя. Перед началом работ с двигателем необходимо установить его начальное состояние и определить внешние показатели. Для этого надо произвести предварительное испытание. Удобнее всего это сделать на стенде, так как без предварительного испытания всякая работа по улучшению и форсировке двигателя будет носить характер попыток.
    По окончании работ по улучшению и форсировке двигателя каждый автомобиль, подготавливаемый для гонок, безусловно должен быть испытан на дороге. Перед испытаниями необходимо провести ряд определенных проверок и регулировок с помощью простейших измерительных приборов. Проверить зазоры в клапанах, убедиться в правильности фаз газораспределения, проверить идентичность компрессии у всех цилиндров (точность в пределах 5, замерить ЗАЗор в распределителе зажигания и установить надлежащий угол опережения зажигания. Слово «регулировка» для некоторых мастеров звучит слишком обыденно.
    Однако без хорошей регулировки любая форсировка-пустая трата времени. Распространенное среди спортсменов мнение, что 90% форсировкн заключается в точной регулировке и только 10% бывает получено благодаря самой форсировке, не далеко от истины. Выполнив все работы по регулировке, можно браться за мероприятия, способствующие повышению мощности. Имеется в виду полировка каналов на тракте впуска и выпуска и полировка поверхностей камер сгорания, установка большого размера клапанов, повышение степени сжатия и применение нескольких карбюраторов, отрегулированных для совместной работы на одном двигателе. Свечи мало влияют на мощность двигателя и большей частью подбираются из соображений степени сжатия и сорта топлива. Завершающими работами по форсировке двигателя является устройство настроенных систем впуска и выпуска на определенное число оборотов.

    2. Выбор передаточного числа главной передачи

    Одной из трудоемких и важных работ при подготовке скоростного автомобиля к состязаниям является подбор передаточного числа для главной передачи. Передаточное число главной передачи должно обеспечивать автомобилю максимально возможную скорость движения и высокую приемистость при разгоне, сохраняя при этом допустимое превышение номинальных оборотов коленчатого вала двигателя.

    Динамические качества скоростного автомобиля задаются в зависимости от назначения автомобиля для кольцевых гонок или для рекордного заезда и от характера предполагаемых состязаний, т. е. на короткую или длинную дистанцию. Если автомобиль подготавливается к шоссейно-кольцевым гонкам, которые будут проводиться в условиях пересеченной местности или на горных дорогах, то в этом случае автомобиль должен располагать большим запасом тяги для быстрого разгона, что очень важно для получения высокой средней технической скорости движения. У автомобиля, предназначаемого для заездов на установление рекордов скорости на прямолинейном коротком участке дороги, когда способность быстро разгоняться не имеет первостепенного значения, следует обеспечить только возможно высокую скорость движения и надежную работу двигателя на этой скорости и оборотах в течение продолжительного времени.
    В зависимости от того, к какому из перечисленных состязаний готовится автомобиль, и выбирается то или иное передаточное число главной передачи. Выбор необходимого передаточного числа главной передачи требует проведения расчетной работы и экспериментов на дороге. Теоретически передаточное число главной передачи должно быть таким, чтобы суммарная кривая мощности, идущей на преодоление всех сопротивлений движению автомобиля, пересекала кривую мощности двигателя в точке наивыгоднейшего значения последней, т. е. на перегибе скоростной характеристики.Однако практически в связи с тем, что даже на пути в один километр сопротивления движению не строго одинаковы (качество покрытия дороги, порывы ветра и др.), то и для скоростных состязаний на короткие дистанции необходимо обеспечивать некоторый запас тяги при движении автомобиля с максимальной скоростью. Это достигается выбором такого передаточного числа главной передачи, при которой пересечение кривой сопротивлений с кривой мощности двигателя происходит при скорости вращения коленчатого вала несколько большей чем та, которая соответствует максимальной мощности.
    В зависимости от вида состязания и дорожных условий указанное превышение номинальных оборотов может достигать от 5 до 15%, причем больший процент для автомобилей, работающих с переменным режимом. Последнее условие необходимо для того, чтобы при движении автомобиля с максимальной скоростью случайные повышения сопротивления, снижая скорость движения и обороты двигателя, не приводили к падению мощности, а наоборот, увеличивали ее, приближая к максимальной, т. е. выводили работу двигателя на перегиб мощности. Практика подбора передаточных чисел для главных передач показывает, что достаточно изменить величину, даже на одну или две десятых, как заметно изменятся динамические качества автомобиля. Поэтому изменять число при подборе следует постепенно.
    Влияние величины передаточного числа на динамические качества автомобиля и работу двигателя можно проследить по свободному графику. Он наглядно показывает зависимость максимальной скорости от передаточного числа, изменение оборотов вала и динамического фактора, т. е. тяги, отнесенной к весу автомобиля.На скоростные автомобили, готовящиеся к шоссейно-кольцевым гонкам, трассы которых обычно пролегают в пересеченной местности с большим количеством подъемов, спусков и поворотов, вызывающих необходимость в частых снижениях скорости и разгонах, рекомендуется устанавливать коробки передач с четырьмя или пятью передачами. Число промежуточных ступеней в коробке и их передаточные числа оказывают большое влияние на способность автомобиля разгоняться, а также на получение наивысшей скорости на подъемах. Выбранные передаточные числа ступеней должны обеспечивать автомобилю достижение максимальной скорости в наикратчайшее время.
    При этом, в движении на каждой передаче желательно использование наибольшей мощности двигателя (в среднем). Иначе говоря, обороты двигателя, с которых начинается разгон на любой передаче, должны быть по возможности ближе к оборотам максимальной мощности. Обычно зависимость между передаточными числами у промежуточных передач в быстроходных автомобилях выражается геометрической пропорцией, с некоторым отклонением для высоких ступеней-близких к прямой передаче, величины которых бывают сближены. Особенно большое значение для скоростного автомобиля имеет подбор передаточного отношения для передачи, следующей за прямой (четвертой или третьей), так как именно эти передачи чаще всего используются при разгонах после частичного замедления или на подъемах.
    В большинстве случаев эти передаточные отношения бывают в пределах 1,25-1,35 не более, а при наличии в коробке пяти передач для переднего хода четвертая имеет еще более близкое значение к прямой, например 1,09-1,20. Работая над контролем и подготовкой агрегатов силовой передачи скоростного автомобиля, надо помнить, что главные потери в коробках передач и редукторах задних мостов составляются из сил, идущих на взбалтывание масла. Следовательно, чем масла больше и чем оно гуще, тем выше потери. Это, однако, не означает, что можно снижать уровень масла против нормы, заданной конструкцией агрегата.

    3. Работы по повышению устойчивости автомобиля

    Устойчивость гоночного автомобиля, участвующего в гонках по кольцевой трассе, имеет решающее значение для успеха. Устойчивый автомобиль позволяет гонщику полнее использовать всю мощность двигателя, развивать наибольшую скорость на поворотах, применять более интенсивное торможение, подходя к препятствию, и тем самым увеличивать среднюю скорость прохождения круга. Хорошая устойчивость автомобиля упрощает управление им, снимая излишнее напряжение у спортсмена во время гонки. К качеству «устойчивость» тесно примыкает качество «управляемость», т. е. способность автомобиля держать заданное гонщиком направление.

    Устойчивость и управляемость автомобиля в большой степени зависят от конструкции узлов ходовых механизмов, а также и от общей компоновки всего шасси. Однако и спортсмен, подготавливающий к скоростным состязаниям серийный автомобиль, имеет возможность улучшить его устойчивость и управляемость. Возможными работами в данном случае являются: снижение высоты расположения центра тяжести автомобиля, регулировка углов наклона шкворней, иначе говоря создание лучшей стабилизации управляемых колес; контроль за давлением воздуха в шинах передних и задних колес. Снижение высоты расположения центра тяжести является одним из действенных способов повышения устойчивости автомобиля для прохождения поворотов с большей скоростью.
    Снизить центр тяжести готового автомобиля без больших конструктивных изменений можно следующим образом: постараться разместить как можно ниже такие тяжелые детали и агрегаты, как аккумуляторная батарея, бензиновый бак и другие предметы вспомогательного оборудования. Но это не должно привести к неправильному распределению общего веса автомобиля по осям. Для получения хорошей устойчивости распределение общего веса должно быть равным для передних и задних колес. В крайнем случае можно допустить некоторое увеличение веса на переднюю ось. Перемещение центра тяжести назад увеличит на повороте боковую силу, действующую на задние колеса. От этого увеличится угол увода задних колес по сравнению с углом увода передних, а это приведет к снижению устойчивости. Однако вес, приходящийся на задние колеса, должен обеспечивать необходимое тяговое усилие для интенсивного разгона без пробуксовки колес.
    В последнее время в целях увеличения сцепного веса и обеспечения высокого тягового усилия на гоночных автомобилях устанавливаются двигатели сзади. В этом случае оптимальным распределением веса по осям считается 55% на заднюю ось и 45% -на переднюю. Стабилизация управляемых колес достигается за счет наклонов шкворней в сторону и назад. Особенно полезным для скоростного автомобиля надо считать наклон шкворня назад. Действие стабилизирующего момента, т. е. стремление колес занять нейтральное положение, в этом случае происходит от центробежной силы, возникающей при поворотах и возрастающей от увеличения скорости движения и крутизны поворота, чем облегчается управление на повороте. К тому же изменение угла наклона шкворня назад более доступно спортсмену при подготовке готового автомобиля. Для этого нужно применить соответствующие подкладки в рычажный механизм передней подвески.
    При действии на автомобиль боковой силы, возникающей, например, при повороте автомобиля или при боковом ветре, качение его колес вследствие их упругости не будет происходить в плоскости их вращения, а сместится на некоторый угол, называемый углом увода. Величина угла увода зависит от величины боковой силы на колеса, от вертикальной нагрузки на колесо, конструкции шины и от внутреннего давления воздуха в шине. Надо сказать, что занимаясь подготовкой скоростного автомобиля к состязаниям, спортсмен не всегда имеете возможность изменять соотношение весов, приходящиxХxХxХ на передние и задние колеса автомобиля, не всегда он может выбирать и конструкцию шин. Иначе говоря, ему трудно внести усовершенствования, которые влиял бы на величины углов увода колес.
    В распоряжении водителя остается только регулировка давления воздуха в шинах. И это он может делать в очень узких пределах, ограничиваемых техническими требованиями шинных заводов. Чем больше давление воздуха в шине, тем меньше, при прочих равных условиях, будет угол увода колеса. Установлено, что лучшая устойчивость автомобиля на повороте и на прямой будет в том случае, когда угол увода у передних колес больше, чем угол увода задних. Следовательно, для лучшей устойчивости желательно, при равном распределении веса автомобиля по осям, применять давление в шинах передних колес ниже, чем в шинах задних колес. При такой регулировке давления, из-за большего увода передних колес, при повороте автомобиля возникает так называемое «недостаточное поворачивание», которое и обеспечит большую устойчивость и лучшую управляемость его.
    В заключение приведем некоторые сведения о специальных работах с автомобилем, предназначаемым для заездов на установление рекордов скорости, которые могут проводиться и при подготовке гоночного автомобиля, располагающего высокой максимальной скоростью свыше 200 км/час. Создавая автомобиль для рекордных заездов, большие работы и "средства потребуются для исследований, направленных на снижение сопротивления воздуха, заключающиеся в опытной продувке моделей кузова в аэродинамической трубе. Модели выполняются в уменьшенном масштабе. В редких случаях продувается модель в натуральную величину. Выбор размера модели зависит от диаметра аэродинамической трубы, имеющейся в распоряжении, а также от производственных возможностей. Величина сопротивления воздуха зависит от величины лобовой площади автомобиля и формы кузова, которая оцеНивается коэффициентом обтекаемости. Для ориентировочных расчетов этот коэффициент можно принимать в пределах 0,015 (идеальный случай) до 0,025, имея в виду хорошую форму кузова. Величина лобовой площади может быть получена по замеру площади силуэта поперечного вида автомобиля или, что достаточно точно, как произведение колеи на высоту.
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  2. #2
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию Ответ: тюнинг^техни4еский

    Распорки (они же "растяжки") - один из самых привычных элементов тюнинговых и спортивных автомобилей. Тем не менее жаркие споры вокруг них не утихают. Сторонники считают, что они улучшают управляемость автомобиля, укрепляя кузов и оберегая от деформации на неровностях. Противники говорят об опасности потерять обе стойки разом при боковом ударе, вспоминают о добавке веса и дополнительных очагах коррозии.

    Скелет автомобиля иногда нуждается во вмешательстве. Значит, надо ставить ортопедические аппараты - говорят, помогают.

    Мы не чужды экспериментаторского духа – иногда готовы, как врачи прошлого, испытывать на себе что попало. Я осторожен, но ради дела готов на многое, тем более на такую малость. К тому же и владелец GTI, кузов которого устал настолько, что при съезде с бордюра он дважды глубоко вздыхает. Старик просит деликатности, но миндальничать с ним не хочу – пусть служит тюнингу. А главное – вопрос о растяжках в разных формах встречается по пять раз на дню. Поневоле становится интересно, а как на самом деле, где правда?

    Доводы скептиков априори считаю ошибочными: добавка веса будет ничтожной, все точки крепления и места соприкосновения деталей легко защитить от коррозии. Против удара, даже не самого сильного, не поспоришь, с растяжкой сразу оба передних крыла поведет. Но тут я просто стучу по дереву...

    Для пробы принял решение ограничиться самой популярной растяжкой – на опоры передних стоек. Изучение рынка привело к выводу, что простота устройства кажущаяся: это не совсем «один палка – два уха», а солидное произведение инженерии со своими видами и подвидами. Если суммировать информацию, выйдет коротенький ликбез.

    Во-первых, для изготовления растяжек применяют разные материалы, самые распространенные из которых сталь, алюминий и карбон. Во-вторых, растяжки бывают регулируемыми или нет, причем места регулировки у разных изделий располагаются либо по центру, либо по бокам – ближе к кронштейнам. В-третьих, опорные площадки могут быть самыми разными. Если учесть все варианты, получается просто изобилие модификаций.

    И все-таки мой выбор – алюминий, без регулировки, фирменная OMP. Почему именно она? Привлекла своей узкой специализацией – изготовлена не только под конкретную модель, но и определенную модификацию. Для точно такой же машины, как у меня, но с другим мотором нужна уже другая. Понравилось отсутствие регулировки: нет возможности «накрутить от души» и все испортить. Немаловажна легкость (проще устанавливать). Ну и конечно, изящный внешний вид – для украшения подкапотного пространства. А это, что уж скрывать, важнейший фактор...

    Монтаж оказался не таким простым делом. Если честно, при правильной установке с моей машины нужно снимать обе стойки, чтобы пропустить болты сквозь чашки (на «восьмерках» и «десятках» проще – наружу торчат шпильки крепления опор). «Лишнюю» работу делать очень не хотелось. Посоветовавшись со спецами, я пошел на хитрость – прикрутил растяжку большущими саморезами, по четыре на каждую сторону. Все-таки у меня не спорткар, а городской (иногда дачный) автомобиль. Сдюжит...

    Вы знаете, как это непросто – просверлить восемь отверстий в кузове собственной машины? Рука не поднимается. А верещание дрели напоминает визг бормашины. И эта противная металлическая стружка... Беспокойство немного отпускает, когда растяжка уже на месте, а железо защищено от ржавчины цинкосодержащей грунтовкой да еще и антикоррозионной мастикой сверху.

    Конечно, все нововведения хочется немедленно испытать. Чтобы сделать все правильно, пришлось запастись конусами и отправиться на импровизированный полигон – большую асфальтовую площадку на окраине. Уже по дороге я почувствовал, что автомобиль стал лучше повиноваться, резче реагировать на руль. Такая «собранность» даже слегка удивила. Да и скрип салона вроде бы уменьшился – вот этого я не ждал, сюрприз был приятным.

    На «полигоне», где я много раз упражнялся в «переставке» и «змейке», открылось, что машина легче держит заданную траекторию. Конуса летели в стороны реже обычного, и «ловить» автомобиль было проще. Вот это неоценимое качество в экстремальных ситуациях, при объезде препятствия на высокой скорости. Риск потерять контроль над «мягкой» машиной, несомненно, выше. Так что растяжку стоило ставить хотя бы ради этого: на наших дорогах «лосиные тесты» не редкость.

    Но такие методы исследования нельзя назвать научными, поэтому я списываю часть заслуг растяжки на субъективное восприятие, эмоции. Помню, точно так же было с появлением на моем GTI спортивного руля – казалось, что сил в моторе прибыло. Но в чем абсолютно уверен – теперь при съезде с бордюра машина издает только один тоскливый вздох. Он доносится из задней части: туда, видимо, тоже пора ставить растяжку. Или, вернее сказать, распорку. Существуют такие разновидности – одна штанга или внушительная «рамка»-трапеция. Глядишь, и поможет. Надо только представить, как будет сочетаться такой спортивный аксессуар с рассадой...
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  3. #3
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию Ответ: тюнинг^техни4еский

    "Недавно посмотрел фильм "Форсаж" про уличных гонщиков, и мне не совсем понятно, что за красную кнопку нажимали почти все герои фильма, чтобы их авто ехало быстрее?"

    Это ускоритель, основанный на добавлении в горючую смесь особого газа -- N2O, "закиси азота", известной также как "веселящий газ". В США, где этот способ форсировки мотора и придумали, его называют "нитрос" (nitrous -- сокращенно от nitrous oxide). Хранится "ускорительный" газ в виде жидкости в баллоне в багажнике и при необходимости нажатием кнопки подается непосредственно в камеру сгорания вместе с горючей смесью. Прирост "лошадей" достигается за счет того, что закись азота сгорает с большим выделением энергии. К тому же по дороге из баллона в двигатель "нитрос" превращается из жидкости в газ и, согласно законам физики, охлаждается -- до минус 50 градусов. Плотность горючей смеси при этом повышается, то есть в цилиндры попадает больше воздуха и бензина. Главное преимущество "нитроса" заключается в том, что он работает только тогда, когда нажимается кнопка. Остальное время двигатель работает в обычном режиме.

    Между тем "нитрос" весьма существенно увеличивает мощность -- малолитражному четырехцилиндровому мотору он добавит сил 25, а большому V8 -- до 400 (хотя это и потребует существенной доработки конструкции).

    В США на данный момент существует десяток фирм, специализирующиxХxХxХ на производстве комплектов и комплектующих для использования "нитроса". Штука это, правда, небезопасная как для двигателя, так и для человека. Среди американских тюнингеров ходит много историй про раскрывшиеся "ромашкой" движки и взорвавшиеся на ходу машины.

    У нас в стране этот метод форсировки двигателя пока не очень популярен: комплект с установкой зашкаливает за $1500, а заправиться по цене $20 за баллон (его хватает от 4 до 10 заездов на 402 метра с полным форсажем) можно пока только в одном месте.
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  4. #4
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию Ответ: тюнинг^техни4еский

    85 лет назад на заводе "Пежо" работали четыре инженера и одновременно гонщика: Эрне Анри, Жорж Буалло, Жюль Гу, Поль Зуккарелли - "банда четырех". Так их прозвали за стремление любым путем реализовать свою идею. Именно они сообща задумали, спроектировали, построили и испытали на гонках новую конструкцию гоночного мотора: два распределительных вала (Double overhead cam-shafts = DOHC) в головке цилиндров и четыре клапана (4 valves) на каждый цилиндр. Двигатели тогда были тихоходными (максимум две тысячи оборотов в минуту) - длинные толкающие штанги, тяжелые и массивные коромысла оказывались не по силам клапанным пружинам.

    Кажется, первым выдвинул идею Зуккарелли - поместить распределительные валы непосредственно над каждым рядом клапанов (впускных и выпускных) и отказаться от "посредников" - коромысел, штанг, рокеров и т.п. А чтобы каждый клапан сделать еще легче, пусть их будет на цилиндр не два, а четыре. Четыре легких клапана. И даже при увеличении оборотов в полтора раза на пружины станут приходиться существенно меньшие нагрузки.

    Э. Анри (теоретик "банды") рассчитал, что чем больше смеси мотор "вдохнет" за рабочий цикл, тем выше мощность. Соответственно, надо довести до предела проходное сечение клапанов. Через кольцевые щели двух впускных клапанов малого диаметра, вычислил Анри, в цилиндр поступит примерно в полтора раза больше горючей смеси, чем через один большой. Кроме того, смесь при такой конструкции будет лучше сгорать, вырастет К.П.Д. и экономичность двигателя.

    Банда четырех" добилась своего. Гоночные "Пежо" стали одерживать одну победу за другой. Новую конструкцию стали копировать фирмы "Балло", "Санбим", "Воксхолл", "Сальмсон" и многие другие. Жизнь доказала правильность выбранного технического решения, несмотря на всю его сложность. Тогда бытовало мнение, что сложный механизм - это ненадежный механизм. Увы, известно немало очень простых конструкций, быстро выходивших из строя в результате невысокой точности изготовления, недостаточной смазки, несовершенного расчета нагрузок или ошибок в выборе материала.Сразу ухватились за новую идею в авиационной промышленности. Сложные, но очень надежные авиамоторы быстро пошли в серию. (Приведем лишь один пример - известный авиамотор АМ-34 конструкции А. Микулина, производство которого было освоено в начале тридцатых годов.)

    Автомобильные заводы тоже выпускали двигатели такого типа, но в мизерных количествах. (Первым отечественным автомобилем с мотором с двумя распредвалами и четырьмя клапанами на цилиндр стал в 1951 году... карьерный самосвал МАЗ-525 с дизелем Д-12А, разновидностью танкового двигателя В-2, который, в свою очередь, вел происхождение от авиамотора.)

    Возможно, что силовые агрегаты DOHC-4V так и остались бы уделом гоночных и спортивных машин, но нефтяной кризис, стремление поднять мощность малолитражных моторов и борьба за снижение вредных выбросов дали новый толчок к поиску. Кстати, былая боязнь сложных конструкций исчезла с приходом в автомобилестроение современных технологий.

    И вот в конце восьмидесятых и начале девяностых годов один за другим стали появляться на свет двухвальные и четырехклапанные двигатели. Сегодня более полусотни автомобильных фирм серийно выпускают эти моторы. Но массовое производство ставит и свои непростые задачи. Для привода двух распределительных валов в головке цилиндров можно использовать зубчатый ремень, цепь или набор шестерен. Ремень дешев, не требует смазки, практически бесшумен, но его обрыв означает катастрофу для всего двигателя: неуправляемый клапан наталкивается на поршень, оба разрушаются, повреждая одновременно гильзу цилиндра и блок. Цепь надежней, хотя и шумнее. Недостаток - постепенное вытягивание. Устройства для автоматического натяжения решают проблему, но для цепи, которая должна работать в масляном "тумане", необходим еще и герметичный картер.Набор шестерен сложен, дорог и очень шумен, но абсолютно надежен.

    Пока конструкторский рейтинг выглядит так: выше всех - ремень, потом - цепь и, наконец, шестерни. В случае технологически скверного исполнения любого из приведенных вариантов владелец автомобиля становится мастером площадной брани. Если же все сделано хорошо, то водитель, естественно, даже забывает поинтересоваться устройством привода этого самого DOHC. О достоинствах четырех клапанов на цилиндр речь уже шла. Но не забудем, что чем выше степень сжатия, тем выше К.П.Д. мотора. И не удивительно, что современные двигатели работают с высокими (9,5 - 10) степенями сжатия. В таких случаях самая выгодная форма камеры сгорания - полусферическая - превращается в шаровой сегмент. (На лицах теоретиков термодинамики сразу же появляется мина отвращения.)

    Приходится искать компромисс. С одной стороны, надо сделать камеру сгорания шатрообразной, а с другой - "шатер" должен быть покатым, со скругленными углами. Этого можно добиться только уменьшая угол между впускными и выпускными клапанами. Словом, дан приказ: выше степень сжатия - меньше угол между клапанами. На двигателе CEAT-Ibuza-GTI, к примеру, всего 25 (на моторах "
    Ниссан-Алмера" - 26, а у "Ягуар-V8" - 2.При четырех клапанах на цилиндр единственное место для свечи в камере сгорания - в центре. Длинные газовые каналы настолько увеличивают высоту головки цилиндров, что свеча оказывается на дне глубокого колодца. Вывернуть и вынуть ее оттуда поможет специальный ключ. Но не в этом дело. А если "колодец" заполнить чем-нибудь полезным, скажем, разместить сразу над свечой "личную" катушку зажигания? И заткнуть сверху колодец герметичной пробкой (пластмассовой или резиновой), через которую пропустить кабель? Тогда в сырую погоду провод от катушки зажигания к свече всегда будет сухим! Вот так неизбежный недостаток стал преимуществом.Схема привода клапанов DOHC (есть и другое название - Twin Cam) страдает одним недостатком. Для регулировки клапанных зазоров приходится вынимать кулачковые валы, нарушать установку фаз газораспределения и подбирать толщину регулировочных шайб между кулачком и стаканчиковым толкателем. Потом снова сборка, повторное измерение ЗАЗора и, если не удалось угадать с прокладками, начинай все сначала.Конечно, трудоемкие регулировки никого, кроме гоночных механиков-трудоголиков не радовали. Конструкторы выдумывали различные хитроумные регулировочные устройства, но те лишь утяжеляли детали клапанного привода, и тогда все достоинства DOHC шли насмарку.

    Решение нашлось очень вовремя. А что, если в зазор между "затылком" клапана и стаканчиковым толкателем подавать под давлением масло из системы смазки? И чтобы этот зазор всегда выбирался в зависимости от того, холодный двигатель или горячий, изношено гнездо клапана или нет. Иными словами, появился гидравлический компенсатор
    ЗАЗора, который быстро вошел в обиход и ныне применяется на большинстве двигателей с клапанным механизмом DOHC - от "Кадиллак-Нортстар" до "Опель-Корса".

    На гоночных же двигателях, как и 85 лет назад, рост быстроходности сдерживали клапанные пружины. Появились было конструкции так называемого десмодромного (без пружин) привода. Клапан открывался под воздействием кулачка распределительного вала и закрывался другим кулачком, а не усилием пружины. Но деликатный и сложный механизм дальнейшего развития пока не получил.

    В восьмидесятые годы на гоночных моторах стали заменять клапанные пружины сжатым газом. Под тонкостенный стаканчиковый толкатель клапана подавался газ. Итог отличный: никакой инерции, никаких перегрузок в материале. Двигатели Формулы-1 (в том числе и "Пежо-А12" - дальний родственник мотора, созданного "бандой четырех"), несмотря на внушительный рабочий объем каждого цилиндра (300 - 350 см3) и, следовательно, довольно большие размеры клапанов, без поломок работали в режиме 16 - 18 тыс. об/мин. Эрне Анри умер в нищете и безвестности в 1950 году. Трое его коллег ушли из жизни еще раньше. Экзотическая конструкция прошлых лет - DOHC и 4V - сегодня стала ширпотребом. Более быстроходные, более мощные, более экономичные, более эффективные по процессу сгорания современные двигатели обязаны своими высокими показателями выдающемуся изобретению почти вековой давности.
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  5. #5
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию Ответ: тюнинг^техни4еский

    Ну вот, казалось бы, все. Двигатель форсирован, коробка подобрана подходящая, тормоза усилены. Можно «выстреливать» на улицу, распугивая собак и заставляя сидящий на лавочках «плюшевый десант» набожно креститься… Погодите, не торопитесь. Ваше чудо техники способно ездить хоть и быстро, но пока только по прямой. Для придания машине соответствующей управляемости придется заняться ходовой частью, в первую очередь — подвеской.

    Боже упаси увлечься улучшением кинематики MacPherson или Multilink. Придется свято чтить золотое правило механика, гласящее: «Не мешай машине нормально работать». Улучшение характеристик подвески может идти только в одном направлении: устранение компромиссов, на которые конструкторам пришлось пойти ради обеспечения пассажирам должного комфорта. Когда стоит выбор — комфорт или возможность лучше держать дорогу — удобствами придется пожертвовать.

    Первое, что придется сделать — заменить стандартные амортизаторы на более жесткие спортивные. Они, как правило, газонаполненные, и более стабильно работают при длительных нагрузках (газ, давя через поршень на жидкость, предотвращает ее вспе
    Нивание, которое изменяло бы характеристики амортизатора). Кроме того, у таких амортизаторов чаще всего можно регулировать сопротивление сжатию и отбою. При регулировке важно не перестараться; в поисках наивыгоднейших характеристик подвески иные умельцы умудряются настроить амортизаторы так, что сопротивление сжатию становится больше сопротивления отбою! Процедура настройки зависит от модели амортизатора — некоторые приходится для этого каждый раз снимать с машины, а самые сложные (и, соответственно, дорогие) можно регулировать кнопками с места водителя. Существуют и компромиссные варианты типа Monroe Sensatrac, у которых характеристики в некоторых пределах меняются автоматически в зависимости от режима передвижения.

    Улучшению управляемости и особенно повышению устойчивости автомобиля в поворотах способствуют более жесткие пружины подвески. Последнее слово в этой области — двухсекционные узлы, состоящие из двух пружин: сверхжесткой верхней и мягкой нижней. Это решение улучшает контакт колеса с дорогой: разгруженное в повороте колесо не «зависает» над поверхностью, а под воздействием нижней пружины прижимается к асфальту.

    Для того, чтобы уменьшить крен машины, ведущий к «зависанию» колес в повороте, устанавливают новые, более жесткие стабилизаторы поперечной устойчивости.

    При их установке значительно «ужесточается» работа всей подвески, что не всем придется по нраву. Если вы готовы это стерпеть, можно пойти еще дальше — заменить резинометаллические шарниры подвески на стальные сферические. Это значительно повысит управляемость, вот только высокочастотные вибрации вы будете ощущать всем телом…

    Поработав над подвеской, не забудьте о колесах. Здесь опять придется столкнуться с альтернативой: комфорт или управляемость. Спортивные низкопрофильные шины отлично держат дорогу, но вот на колдобинах и выбоинах сердце кровью обливается. Особенно если такие покрышки (серии 50, а то и ниже) установлены на дорогущих 16-, 17- или 18-дюймовых кованых дисках. Литые подешевле, но при попадании колеса в хорошую выбоину на большой скорости алюминиевый диск может просто расколоться.

    Не всегда благоприятно влияет на управляемость увеличение ширины шины. На сухом асфальте широкая резина, естественно, получше. Но вот в дождь, да еще на загородной трассе, украшенной глиняными «отметинами» от протекторов колхозных тракторов… Кроме того, более широкое колесо — это увеличенное плечо обкатки, а значит, повышенная нагрузка на подшипники ступицы и изменение кинематики подвески со всеми вытекающими последствиями…

    Впрочем, бывают случаи, когда на изменение геометрии подвески можно пойти. Такие варианты предлагают тюнинговые конторы, непосредственно связанные с заводом-изготовителем «основы» (например, немецкий AMG) и использующие заводские наработки по «оспортивливанию» поведения автомобиля на дороге. Правда, подобных предложений немного и стоят они недешево. Еще дороже стоит «пересадка» всей подвески (обычно задней) от более мощного и скоростного автомобиля. В этом случае уже не обойтись без такой трудоемкой и дорогостоящей операции, как вваривание в стандартный каркас кузова кронштейнов (а то и всего днища) от «донора».

    Чаще всего силовую структуру кузова переделывать не обязательно, можно ограничиться установкой распорки на кронштейны стоек передней подвески.

    Такие узлы выпускаются многими тюнинговыми ателье, стоят недорого, а эффект, получаемый с их помощью, достаточно велик. В случае же радикального тюнинга, сопряженного с многократным увеличением мощности, скорее всего придется заняться усилением несущей основы кузова. Чаще всего это косынки и распорки, места установки которых подсказаны раллийным опытом эксплуатации данной модели автомобиля. Можно пойти и дальше, установив трубчатые усилители днища. Самым экстремальным решением является вварной каркас безопасности, подобный гоночному, но его применение вряд ли можно рекомендовать для машины повседневной эксплуатации.

    Получившийся после всех таких переделок «волк в овечьей шкуре» внешне от оригинала отличаться почти не будет, и это хорошо, если вы предпочитаете не афишировать полноту своего кошелька. Но если вы не прочь придать своему автомобилю еще и внешнюю индивидуальность — к вашим услугам множество наборов, позволяющих изменить (радикально или не слишком) дизайн машины. Причем зачастую такие узлы и детали могут прямо или косвенно влиять на ее ходовые качества.

    Хороший пример — т.н. аэродинамическая обвеска: спойлеры, юбки, антикрылья, дефлекторы и т. д. Эти пластиковые детали, помимо придания машине более спортивного облика, увеличивают прижимающую силу, действующую на колеса (точнее, компенсируют подъемную силу, создаваемую кузовом). Некоторые из них — передний и задний спойлеры, накладки, сглаживающие переходы кузовных деталей — способствуют снижению аэродинамического сопротивления. Но только в том случае, когда обвеска была тщательно и профессионально проработана в аэродинамической трубе. Особенно это справедливо для задних спойлеров, изменение расположения которых на какие-то пару сантиметров может дать результат, противоположный желаемому…

    Еще один способ снижения лобового сопротивления кузова, причем абсолютно беспроигрышный, — это так называемый чопперинг (от английского chop — рубить), — понижение уровня крыши с помощью укорачивания стоек. Операция эта, несмотря на внешнюю простоту, крайне трудоемкая — практически речь идет о новом верхе, скроенном с использованием кусков старого. При этом не забудьте о проблеме «обрезания» стекол. А главное, такая «перестройка» верха кузова приводит к уменьшению жизненного пространства в салоне и снижению прочности несущей структуры — любой сварной шов уменьшает прочность узла по сравнению с цельной деталью.

    Заботясь о ходовых качествах машины, не стоит забывать о себе, ведь в комфорте вы уже и так сильно потеряли. Скрасить пребывание в автомобиле, лучше почувствовать его, реализовать его новые возможности помогут фирмы, выпускающие аксессуары для оснащения салона — спортивные сиденья, рулевые колеса, набалдашники на рычаг КПП… Выбор зависит от ваших финансовых возможностей и представлений об эргономике водительского места.

    Несколько слов о безопасности. Аварии происходят не только с соседями, да и допустить ошибку, управляя по-настоящему тюнингованным автомобилем, намного проще, чем сидя за рулем заурядной машины, до опасных скоростей практически не разгоняющейся. Лучше, если ремни безопасности будут спортивными четырехточечными. Не помешает система аварийного пожаротушения в любом виде: от полноценной, омологированной FIA для гоночных автомобилей до простого подкапотного огнетушителя, автоматически срабатывающего при повышении температуры. На повышение безопасности «работают» и более мощные, правильно отрегулированные фары головного света, прожекторы и противотуманки. Не вредно дополнительно выделить машину в потоке. Например, за счет раскраски…

    Впрочем, повторимся, многое здесь — дело вкуса и финансовых возможностей. Какие методы и решения использовать при «накручивании» машины — решать вам. Но не забывайте, что многие переделки — рулевого управления, тормозной системы и т.п., — действующими правилами запрещены. И подвижек, которые, как нам обещали, вот-вот произойдут (Журнал «Мотор» №7 (15), пока что-то не предвидится…
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  6. #6
    Эксперт Аватар для Mr.Bandito$
    Регистрация
    16.09.2006
    Адрес
    КвАрТаЛ
    Сообщений
    211

    По умолчанию Ответ: тюнинг^техни4еский


    NoS
    Системы впрыска закиси азота – определенно один из самых экзотических способов тюнинга двигателя, поэтому сразу хочу предупредить, что никакой ответственности за ваши действия после прочтения этой статьи я нести не собираюсь и не буду. Еще одно замечание - прежде, чем задуматься о закиси азота, вы должны удостовериться, что ваше транспортное средство находится в хорошем техническом состоянии. Все неисправные детали - изношенные кольца, плохие прокладки, насосы и т.д. – должны быть заменены, иначе вы не получите максимальной прибавки мощности. Итак, если вы готовы, то приступим!
    Как это всё работает.
    Главный способ повысить мощность двигателя– увеличить подачу воздуха, тем самым сжечь как можно больше топлива. Существует несколько способов для осуществления этой задачи, самый распространенный и известный – использование турбин и механических нагнетателей. Но мы говорим о азоте – впрыск азота тоже способ (и неплохой) сжечь как можно больше смеси.
    Впрыск азота решает эту задачу двумя способами. Первый способ имеет меньший эффект в применении и состоит в следующем: азот находится в баллоне под давлением примерно в 1000 Psi в жидком состоянии; при активизации системы азот переходит в газообразное состояние, что способствует понижению температуры воздуха. Тот из вас, кто помнит немного физику, знает, что понижение температуры воздуха повышает его плотность. Типичная система впрыска азота способна понизить температуру поступающего воздуха, примерно, до -50 градусов цельсия.
    Второй способ имеет большую эффективность : закись азота – двухкомпонентна, при нагревании до 572 градусов F нитрооксид расподается на азот и кислород, именно кислород, содержание которого в нитрооксиде чуть ли не в три раза больше, чем в воздухе позволяет сжечь максимальное количество топлива. Впрыск азота имеет и третий, косвеный, способ увеличения мощности: в процессе впрыска повышается давление в цилиндрах двигателя, которое увеличивает эффективность горения смеси.

    "Мокрые" и "Сухие" системы
    Имеются два основных типа систем впрыска азота. «Мокрая» система, принцип работы которой заключается в подаче топливно-азотистой смеси. «Сухая» система, принцип которой заключается непосредственно в подаче только азота во впускной коллектор. Очевидно, есть преимущества и недостатки обеих систем. Рассмотрим работу «сухой» системы. Система работает при давлении топлива в 80 psi. Увеличение давления и поддержка постоянной величины в магистрали происходит посредством работы топливного соленоида. При повышенном давлении топливо поступает непосредственно во впускной коллектор. Данная система повышает давление топлива выше нормы именно за счет работы соленоида. Этот тип системы имеет несколько главных преимуществ. Первое - для установки системы не требуется кардинального вмешательства в штатную топливную систему и установки дополнительной магистрали, что облегчает установку. Во вторых, поскольку давление азота в баллоне колеблется, количество поступающего топлива, будет изменяться в том же самом количестве (так как система использует давление азота, чтобы повысить количество сгораемого топлива).
    У этой системы есть несколько недостатков. Первое: штатные форсунки могут не выдержать необходимого системе давления в 80 psi. Во вторых, количество азота, впрыскиваемого в коллектор может меняться, в то время как количество топлива – постоянно. Из-за этого возможен впрыск несбалансированной топливно-воздушной смеси в некоторые цилиндры.
    «Мокрые» системы впрыска азота основаны на применении специальных инжекторных пластин, через которые происходит впрыск смеси топлива и азота. Пластины устанавливаются между карбюратором (дросселем) и впускным коллектором. Самое большое преимущество этих систем состоит в том, что смесь топлива и азота является постоянной, в отличии от «сухих» систем. Недостаток данной системы, заключается в следующем – во впускном коллекторе некоторых двигателей, из-за конструктивных особенностей, может образовываться топливная лужа, (после отключения системы лужа исчезнет), во-вторых, соленоид азота постоянно подвергается бензиновым испарениям, этот факт , со временем, ухудшит его работу. Наконец, если давление азота будет слишком большое, это может привести к утечке топливной смеси из некоторых цилиндров.
    Прямой впрыск азота
    Поскольку у каждой из рассмотреных систем есть свои недостатки, и если они вас пугают, обратите внимание на систему прямого впрыска азота. В этих системах применяются отдельные форсунки для каждого цилиндра. Эти системы более совершенны, но и более сложны в установке. Но техническое совершенство влияет на стоимость систем. После того, как вы выбрали для себя тип системы, не забудьте обратить внимание на дополнительное оборудование, как правило, без определенных принадлежностей, эксплуатация системы не приносит должного удовольствия.
    Топливная система
    На мой взгляд, одна из проблем при применении впрыска азота - бедная топливная смесь. Данная проблема относится и к применению турбин и нагнетателей в двигателе. Как правило, для систем мощностью до 100 л.с. производительность штатного бензонасоса является вполне достаточной. Для более мощных систем необходимо использовать специальный топливный насос или поставить дополнительный. Такая переделка топливной системы позволит застраховать ваш двигатель от разрушения, вследствии падения топливного давления до критического уровня. Чистый топливный фильтр - другой важный момент. Хотя я не слышал о моторе, который взорвался от загрязненного топливного фильтра. Но, незабывайте об этом. Если ваша система настроена минимум на 150 – 200 л.с., я уже не говорю о более мощных, желательны более кардинальные изменения топливной системы, например, замена топливной линии на линию с большим проходным сечением трубок.
    Воспламенение
    Следующий важный вопрос - система воспламенения. Двигатели с установленной системой впрыска азота требуют определенных изменений в системе зажигания. Например, использование «холодных» свечей или установка меньшего угла зажигания. Стандартные свечи, мало приспособлены для работы с системой впрыска азота. Платиновые свечи имеют тенденцию сохранять высокую температуру, что может привести к взрыву при использовании азота. Кроме того, зазор свечи должен быть установлен, примерно, 035 для того, чтобы при воспламенении смеси, искра не гасла. Я не собираюсь рекомендовать использовать именно такой зазор, у каждого свои предпочтения, однако, свечи не должны быть платиновыми, и ЗАЗор не должен превышать 035. В зависимости от мощности системы впрыска, могут быть необходимы более «холодные» свечи.
    Сокращение времени воспламенения - другой важный фактор при использовании впрыска азота. Я слышал две причины для этого утверждения (но я не могу подтвердить или отрицать данное утверждение), во-первых – это уменьшает шанс удара (детонации), во-вторых – для более быстрого сгорания топливной смеси, для получения максимальной мощности. Угол опережения зажигания должен быть уменьшен на 1-1,5 градуса для каждых дополнительных 50 л.с. Кроме того, нужно быть очень осторожным в использовании чип-тюнинга. Естественно, можно пойти дальше, и модернизировать блок управления зажиганием, катушку и т.д. Но для большинства систем (исключая очень мощные) данных рекомендаций достаточно.
    Установка
    Теперь перейдем к реальной работе. После того как вы преобрели систему, настало время ее установки. Я собираюсь рассказать вам об установкt «мокрой» системы, т.к. именно с такой системой я наиболее знаком. Однако, большинство рекомендаций подходит и к установке «сухой» системы.

    Сначала о баллоне. Азотистый баллон состоит из 4 частей: непосредственно баллон, клапан, "сдувающийся" клапан давления и газовая трубка. Я думаю, что устройство и принцип действия баллолна и клапана довольно очевидны, я не буду останавливаться на их устройстве.
    "Сдувающийся" клапан - устройство безопасности (обычно располагается непосредственно напротив главного фитинга), который предназначен для того, чтобы открыться, если давление в баллоне превышает номинальное (приблизительно 1600-1800 Psi).

    Газовая трубка – представляет собой слегка изогнутую трубку, которая находится внутри баллона, и обеспечивает подачу азота к клапану. Трубка немного изогнута около основания баллона. Очень важен угол установки баллона в автомобиле. Баллон должен быть установлен таким образом, чтобы трубка была всегда погружена в азот.
    Изготовители обеспечивают необходимыми кронштейнами и инструкцией по установке баллона. Обычно градус установки составляет 15 градусов.
    После того, как баллон и кронштейны установлены, следующая задача - монтаж газовой магистрали к двигателю. Хотя самый легкий путь провести газовую магистраль через салон, такой способ не очень безопасен. Если произойдет разрыв линии, азот может причинить серьезные ожоги, надо помнить, что азот при выбросе в атмосферу переходит в газообразное состояние. Я рекомендую путь установки магистрали через левый лонжерон рамы. Хорошим устройством, обеспечивающим дополнительную безопасность (хотя это ни в коем случае не обязательно) является дополнительный соленоид азота, параллельный основному. Таким образом при засорении первого соленоида система останется работоспособной еще некоторое время, хотя очень непродолжительное. Для «мокрых» систем впрыска азота требуется вмешательство в штатную топливную систему. Требуется повысить сечение топливной магистрали, заменив трубки на аналогичные, но большего сечения. Желательно установить дополнительный топливный насос между бензобаком и топливным фильтром. Такая переделка топливной системы делает топливный поток оптимальным для системы впрыска азота мощностью в 150 л.с. Именно на такую дополнительную мощность настроена рассматриваемая система.
    Для "мокрых" систем, смесь азота и топлива впрыскивается через специальные пластины, которые устанавливаются между карбюратором и впускным коллектором или при помощи форсунок, которые устанавливаются во впускной коллектор, в зависимости от количества цилиндров. Когда система активизирована, множество маленьких отверстий в каждой форсунке распыляют туман смеси топлива и азота в коллектор. Форсунки Fogger выполняют ту же самую функцию, но делают это через единственное отверстие, которое распыляет "туман" перед дроссельной заслонкой. В системе, которую я устанавливал, применяется пластина. Она просто устанавливается между впускным коллектором и дросселем. Монтаж, как предполагалось, очень прост – нужно просто снять заслону, установить пластину, используя специальные прокладки, и собрать узел.
    Затем нужно установить соленоиды и газовую магистраль. В тех комплектах систем впрыска азота, которые разработаны для определенных моделей двигателей, все необходимые кронштейны присутствуют. В других случаях нужно проявить немного изобретательности и сконструировать пару кронштейнов для соленоидов. Я был вынужден сделать пару скобок, заказать некоторые дополнительные фитинги, и изменить длину нескольких газовых линий, которые шли с комплектом (они были слишком длинны).
    Самая большая проблема,с которой я столкнулся, заключалась в поиске места под капотом для установки соленоидов - клиент хотел устанавливать их на виду. Я нашел такое место за впускным коллектором со стороны пассажира. Соленоиды были закреплены на кронштейнах к кузову. Поверьте, требуется время, для правильной установки системы. Установка газовых шлангов под капотом заняла немного времени и сил, в конце я покрасил шланги в черный цвет, таким образом определить наличие установленной системы стало проблематичным, что и требовалось. При монтаже фитингов и газовых шлангов необходимо принять во внимание несколько вещей: на резьбовых соединениях не используйте ленту для герметизации соединений, лучший выбор – тефлоновый герметик. Используйте небольшое количество герметика. Имеется следующая причина для такого утверждения – частицы ленты могут засорить соленоид. А это неприятно. Во – вторых при монтаже дополнительных металлических газовых и бензиновых трубок будьте осторожны, когда будете их гнуть, а делать это придется обязательно. В конце концов используйте специальный инструмент. Установка соленоидов предельно проста и сводится к стыковке клапанов к газовой магистрали.
    В базовой системе впрыска азота используются только два соленоида (топливный и газовый), подключенных параллельно выключателю. Лично я рекомендовал бы использовать два выключателя. Первый – основной, активизирующий систему, второй – дополнительный выключатель дроссельной заслонки - датчик, который следит за положением дросселя и позволяет включить сиситему только при полностью открытой заслонке. Соленоиды должны быть защищены предохранителем. Как правило, топливные и азотистые соленоиды потребляют меньше 15 amps, так что подобрать предохранитель труда не составит. Наконец о проверке установленной системы. В принципе, проверка системы сводиться к нормальной работе соленоидов. Именно на эти два клапана следует обратить особое внимание. Перед эксплуатацией системы, вы должны проверить все ли правильно смонтировано и все ли работает как надо, обязательно удостоверьтесь нет ли течей топлива и т.д. Чтобы проверить работу топливного соленоида, закройте клапан баллона, активизируйте систему, и включите датчик дроссельной заслонки (не сам дроссель а дополнительный выключатель). Если соленоид функционирует нормально, то двигатель будет работать с перебоями, и вполне может заглохнуть из-за дополнительного количества топлива. Проверить азотистый соленоид почти также легко.Так как работа газового соленоида намного напряженнее, чем топливного, при включении вы должны услышать шелчок, означающий открытие и закрытие клапана.
    Настройка
    После того, как установка выполнена и все работает нормально, требуется настроить систему. Перед попыткой настроить азотистую систему, я настоятельно рекомендую отрегулировать штатную топливную систему. Данная регулировка сводится к настройке правильного образования топливно-воздушной смеси. Один из главных пунктов настройки – оптимальное давление баллона. Ваш баллон должен обеспечивать необходимое давления для павильной работы системы впрыска азота. Большинство систем впрыска рассчитаны на давление в баллоне, примерно 1000PSI. Если давление соответствует данному параметру, система функционирует с максимальной мощностью, если давление превышает номинальное, это повлияет на топливно-воздушную смесь, она будет слишком бедной, и потеря мощности гарантирована, снижение давления дает обратный эффект – смесь богаче.
    Хороший метод контроля образования топливно-воздушной смеси – использования газоанализатора. Так же я много слышал от профессионалов о контроле смеси с помощью измерения температуры выхлопных газов ( у бедной смеси выхлоп более горячий), но для меня намного удобнее использовать газоанализатор. Существуют несколько способов настроить образование топливно-воздкшной смеси при использовании «мокрой» системы впрыска азота. Вы можете менять топливные и газовые жиклеры. Если смесь богатая, используйте меньший размер топливного жиклера (или, соответственно, больший размер газового жиклера). В случае бедной топливно-воздушной смеси, устанавливайте жиклер для азота меньшего размера, а жиклер для топлива – большего. Кроме того, если в вашей системе возможна настройка топливного регулятора, вы можете настроить подачу топлива с помощью регулировок.
    Дополнительные компоненты.
    Если вы увлеклись использованием азота для получения дополнительной мощности, то обязательно захотите дополнить вашу систему дополнительными компонентами, часто оказывающимися довольно полезными. Далее я расскажу о компонентах, которые можно добавить к своей системе.
    Сначала о приборах, повышающих безопасность использования системы. Выключатель системы, который реагирует на количество оборотов. Это приспособление чрезвычайно полезно, принцип работы состоит в следующем: выключатель отключит подачу азота при падении оборотов до заданного минимума. На сколько я слышал, применение данного выключателя полезно еще и тем, что активизировать систему впрыска азота можно, когда обороты двигателя достигают отметки не ниже 2500.
    Другая хорошая вещь – прибор, снимающий ограничение скорости ( такие фирмы как MSD, Crane, Accell, Jacobs, и другие продают их в комплекте систем зажигания.) У многих машин ограничитель максимальной скорости отключает топливоподачу, но при использовании азота, это может привести к недостаточному количеству топлива, которое негативным образом скажется на вашем двигателе, и еще, при таком условии подачи топлива, смесь обеднеет, ограничитель способен отключить искру от определенных цилиндров двигателя, что в свою очередь, приведет к несгоревшей топливно-азотистой смеси, которая воспламениться в глушителе ( это намного лучше, чем прогоревший поршень).
    Наконец, я также рекомендовал бы использовать датчик давления топлива. Работа такого датчика состоит в контроле давления топлива, и если давление упадет до критического минимума, выключатель отключит систему, это предотвратит поломку двигателя и избавит вас от последующего ремонта. Реакция выключателя – молниеносна. На одну особенность «мокрых» систем следует обратить внимание при монтаже топливного соленоида: дело в том, что когда топливный соленоид открывается, неизбежно небольшое снижение давления, т.к. топливу необходимо заполнить магистраль от соленоида до форсунки, поэтому необходимо максимально сократить длину топливной магистрали ведущей от соленоида до инжектора.
    Теперь о модернизации системы. Одно из наиболее полезных (по-моему мнению) приобретений, должен стать нагреватель баллона. Мы уже знаем, что наиболее распространенное давление баллона составляет, примерно, 1000 Psi (если давление ниже указанного, происходит образование богатой смеси). Оптимальная температура баллона, необходимая для поддержания необходимого давления - это 85 градусов по Фаренгейту.
    Электрический нагреватель баллона – небольшой гибкий кожух, который монтируется на баллоне. Как правило, более мощные нагреватели комплектуются регулятором температуры. Материал из которого сделан нагреватель, также способствует сохранению тепла уже нагретого баллона.
    Другое полезное приспособление (еще раз, по-моему мнению) – клапан чистки баллона. Клапан чистки баллона представляет собой соленоид с маленькой трубочкой, такой клапан монтируется рядом с соленоидом азота и выпускает из системы воздух. Данный клапан активизируется в ручную с помощью специального выключателя. Такая операция предотвращает задержку при активации системы впрыска азота из-за возможности возникновения воздушного пузыря.
    Один из моих любимых дополнительных компонентов системы - программируемый контроллер. Эта штуковина позволяет получить полный контроль над мощностью вашей системы. В зависимости от заданной программы вы регулируете подачу азота в зависимомти от условий трассы, времени и т.д.
    И последнее – дистанционный клапан баллона (очень удобное устройство). Такой клапан позволяет открывать или закрывать подачу азота дистанционно. Данное устройство не заменяет стандартный клапан баллона, он работает параллельно.
    Я думаю, что общая репутация системы впрыска азота , как опасная, является ложной. По-моему мнению, такую репутацию азотистые системы получили из-за их сравнительной небольшой стоимости ( в сравнении с другими способами прибавки такой же мощности мотору. Мое мнение – если вы аккуратно используйте систему и имеете соответствующие устройства безопасности, системы впрыска азота столь же безопасны, как и другие варианты доработки двигателя (турбины, механические нагнетатели и пр.). Всех неприятностей, о которых я слышал, связанных с применением впрыска азота, можно было избежать, если бы соблюдались необходимые правила предосторожности.
    Есть неоспоримая выгода при применении азота – возможность активировать систему тогда, когда вам это нужно, в остальное время эксплуатируя автомобиль в привычном режиме, тем самым ограничивая нагрузку на двигатель.
    НЕ говори что мне делать, а я не скажу куда тебе идти
    http://www.infoter.narod.ru
    Я падонок!
    Sex Drugs Drum'n'Bass
    Sunnя - my best frienD

  7. #7
    CarTman Аватар для Sunnя
    Регистрация
    13.09.2006
    Адрес
    Квартал
    Сообщений
    1,492

    По умолчанию Ответ: тюнинг^техни4еский

    Вас не должно удивлять, что карбюраторный мотор – правда, в хороших руках – по характеристикам часто стабильней впрыскового. В нем главное – чистота жиклеров и других дозирущих элементов. Но «возня» с машиной не всем по душе, оттого параметры токсичности «уходят», не всегда следуя простой логике. Так случилось на «семерке» с двигателем 2103: токсичность на малых оборотах в норме, а при повышенных растет. Это «звоночек»: двигатель еще не жрет масло, вполне устраивает мощностью и экономичностью, но о близких проблемах уже предупредил.
    Настройку этого мотора начали с проверки токсичности выхлопных газов при работающей вентиляции картера и без нее. Это позволяет понять насколько изношен двигатель – и из-за этого душит себя продуктами сгорания. Например, с отключеным шлангом вентиляции картера – 1% СО, а с подключенным – 5% СО. Дело плохо: мотор крепко потрепан, «вогнать» токсичность в норму не просто. У хорошего мотора эта разница должна составлять около 1% СО.
    Если при отключенной системе вентиляции токсичность на повышенных оборотах растет, то виноват карбюратор. Чистка и регулировка, выставление угла зажигания, как правило, возвращает показатели токсичности в норму. Теперь подключим систему вентиляции картера. Снова много СО на повышенных оборотах? Тогда само сабой напрашивается обеднить регулировки главной дозирующей системы первичной камеры. Увеличим диаметр отверстия главного воздушного жиклера. У карбюраторов «ОЗОН-2105» как правило – с 1,8 до 1,9мм, а у 2107 – с 1,5 до 1,7мм. Нередко необходимо понизить уровень топлива в поплавковой камере, примерно на 1мм. Если и этого мало, то необходимо изменить состав смеси на переходном режиме подстроечным винтом, предварительно удалив заглушку. Все эти манипуляции необходимо производить в несколько приемов с контролем токсичности.
    Если проделанные манипуляции не решили проблем, тогда попробум уменьшить главный топливный жиклер с 1,12 до 1,07 (карбюратор 2107). У модели 2105 этот жиклер уже установлен 1,07. Меньше жиклеров в магазинах не продают. Хотя, говорят, что некоторые умельцы сами изготавливают жиклеры с необходимым отверстием.
    Если у Вас под капотом карбюратор «СОЛЕКС», правила игры те же. Снизить уровень топлива в поплавковой камере, увеличив зазор между поплавками и прокладкой до 5мм. А вот с главным воздушным жиклером тут беда: не бывает эмульсионных трубок с жиклером больше 165. В таком случае осторожно рассверлим его. Обычно достаточно 1,9-2,0мм. Владельцам «СОЛЕКСов» моделей 21051-30 (для классики) повезло больше – здесь можно установить главный воздушный жиклер от карбюратора 2108 или 21083.
    Но, бедная смесь делает работу мотора неустойчивой. Бывает, СО в норме, а СН из-за пропусков вспышек «дурят по черному». Как же быть??? Сначала необходимо отрегулировать зазоры в свечах (делать это нужно цилиндрическим щупом). Затем уменьшить установочный угол опережения зажигания на 5 градусов, чтобы бедная смесь стабильней воспламенялась. В контактной системе зажигания можно увеличить зазоры в свечах с 0,6 до 0,8мм – система справится, а сгорание будет полнее. Иногда смесь бывает обеднена из-за подсоса воздуха через ветхий шланг усилителя тормозов, неплотности стыков коллектора. Если есть подозрение, то необходимые детали надо заменить.
    Если при измерении компресси окажется что она низкая, то можно загустить моторное масло, добавив в него 25% минерального масла МС-20. Выброс картерных газов снизится. Но пробег между заменами масла надо сократить до 6-7 тысяч километров и перед заменой неоходимо хорошо промыть систему.
    Как продлить срок службы нового двигателя??? НИКОГДА не экономить на масле. Для примера – на двигателе 2103 из-зи некачественном масле после пробега 60 тысяч диаметры цилиндров «разнесло» на 0,15мм.
    И последнее – не забывайте про воздушный фильтр. Ведь на каждый килограмм топлива мотор ДОЛЖЕН получать 15 килограмм воздуха!! Простой способ определить качество фильтра – посмотреть на него изнутри. Если внутри он чист – то фильтр хорош, если же внутри он такой-же серый как и снаружи, то ясно, что немало пыли попало и внутрь мотора
    O.у.К.Б
    Mr.Bandito$ - my best frienD

  8. #8
    CarTman Аватар для Sunnя
    Регистрация
    13.09.2006
    Адрес
    Квартал
    Сообщений
    1,492

    По умолчанию Ответ: тюнинг^техни4еский

    Реальная жизнь нередко преподносит "сюрпризы". Трудно, наверное, поверить, что на пути из Тулы в Москву (около 200 км) обыкновенные "Жигули" способны почти полностью опустошить бак. Но когда хозяин-рекордсмен пустил двигатель, мы увидели тот самый, густо-черный дым из выхлопной трубы. Мотор, понятно, "троил", еле-еле работал...



    Видели, как горит лужа бензина? Яркое пламя первой вспышки тотчас сменяется густым, темным дымом. А замечали - никогда лужа не горит красивым голубым пламенем, как бензиновая горелка, хороший примус или паяльная лампа, потому что после вспышки продукты сгорания мешают притоку свежего воздуха, она настолько богата топливом, что последнее горит медленно, сгорает плохо, не полностью. Не случайно в ветреную погоду любой пожар намного опасней, а при загорании в быстро движущемся поезде или автомобиле, летящем самолете некоторые элементы конструкции успевают сгореть в считанные минуты, приводя к катастрофе!
    В отличие от лужи с ее "неорганизованным" пламенем, состав смеси, сгорающей в примусе, паяльной лампе, отопителе "Запорожца", во всех двигателях внутреннего сгорания, а также газотурбинных, ракетных и так далее, регулируемый: бензин, керосин, дизельное или ракетное топливо смешивается с окислителем (кислородом воздуха, жидким кислородом, азотной кислотой и др.) в строго определенных соотношениях.
    Мы в автомобилях имеет дело с бензином и воздухом. Смесь, в которой на 1 кг паров бензина приходится 15 кг воздуха (со стандартным содержанием в нем кислорода), принято называть нормальной. Если на ней работает двигатель вашего автомобиля, его мощность достаточно высока при неплохой экономичности.
    Уменьшим поступление воздуха до 12,5-13 кг. Смесь, как принято говорить, обогатится (бензином) - станет так называемой мощностной, потому что, сгорая в цилиндрах наиболее быстро, создает максимальное давление на поршни, а значит, высокую мощность. Правда, экономичность ухудшается довольно ощутимо, на 15-20% в сравнении с "идеалом". Каким? Если стремиться к экономичности, воздуха к смеси следует немного добавить - до 16 кг на 1 кг бензина. Такую смесь и называют экономичной. Расход бензина становится минимальным, правда, ценой некоторых потерь мощности - до 8-10% в сравнении с "мощностной". Смесь такого состава принято называть обедненной. Если при сгорании на 1 кг бензина затрачивается лишь 11-12 кг воздуха, смесь называют богатой. Дальнейшее обогащение 5-6 кг воздуха на 1 кг топлива приводит к тому, что способность смеси к воспламенению ухудшается настолько, что двигатель вообще может остановиться.
    Нельзя обеднять смесь беспредельно: когда воздуха больше 20 кг на 1 кг бензина, воспламенение от искры станет ненадежным и может вообще прекратиться. А пока он хоть как-то работает на бедной смеси, нечего ждать не только достаточной мощности, но и, как ни странно, экономичности. Ведь тяговые характеристики машины ухудшаются настолько, что водитель вынужден ее "подхлестывать" - например, переходя на пониженную передачу там, где вчера легко ехал на высшей.
    Не каждый обладает необходимым опытом, чтобы без каких-либо приборов, просто по ощущению, правильно оценить состав смеси, поступающей в цилиндры двигателя на различных режимах работы. Правда, ему может "посодействовать" в этом ГАИ, остановив для проверки "на СО". Тогда приобретенный таким образом опыт становится - буквально! - очень дорогим...


    Рис. Зависимость основных характеристик двигателя от состава топливно-воздушной смеси.


    Положим, однако, что вы наблюдательны и своевременно заметили: в теплый летний день выхлопные газы отчетливо видны невооруженным глазом. Дым, дымок... Есть о чем подумать! Выхлопные газы исправного двигателя - по крайней мере, внешне - выглядят чистыми, прозрачными. Откуда же дым?
    Основных причин две. Первая - износ деталей двигателя, о чем мы говорили неоднократно. В цилиндры проникает масло и, сгорев, создает красивый голубой шлейф за кормой и довольно неприятный запах гари в салоне. Подышав ею неделю-другую, вы поймете, что с мотором пора что-то делать: заменять детали, растачивать и т. п. Ситуация, действительно, неприятная, но никогда не путайте ее с другой - когда неполадки возникают в системе питания.
    Двигатель, расходующий много масла, можно отрегулировать так, что окиси углерода (СО) в выхлопе почти не будет (хотя даже голубой дымок не пахнет французскими духами). Но серый или, еще хуже, черный дым из трубы - позор для настоящего автолюбителя! Тут - вина только ваша или того "дяди", которому вы доверили регулировку карбюратора. Как мы уже говорили, это признак богатой смеси. Ни на каких режимах его быть не должно, поскольку содержание "СО" в выхлопе может превысить допустимое в несколько раз!
    Но и это не все. На слишком богатой смеси, как было сказано, мощность мотора существенно снижается, а расход бензина увеличивается. А значит, тотчас и мнение о вас сложится как о беспомощном "чайнике" - ну, кому это понравится?
    Казалось бы, что проще: давайте регулировать карбюратор так, чтобы смесь на любых режимах оставалась бедной - не будет ни "СО", ни черного дыма! На деле не все так просто. Карбюратор, даже простейший, должен позволять двигателю приемлемо работать на самых разнообразных режимах, согласовать которые иногда трудно. Зачастую, обеспечивая работу на одном режиме, жертвуют какими-то характеристиками на другой - тем самым оптимизируют работу машины как целого. Например, холодный пуск (зимой) требует сильного обогащения смеси, при горячем же (когда двигатель достиг максимальной эксплуатационной температуры) такое обогащение, наоборот, недопустимо, - и карбюратор должен готовить смесь, соответствующую каждой из этих ситуаций. Другой пример: когда мотор не связан с колесами (передача выключена), вы имеете дело с "нормальным" холостым ходом двигателя. Но если сбросить газ на высокой скорости, не разъединяя связи мотора и колес, - это тоже холостой ход, "принудительный". Понятно, здесь режимы существенно различны! И снова карбюратор должен готовить то, что нужно для каждого.
    Нагрузочных режимов - великое множество. Если максимальная мощность достигается при определенных условиях - скажем, полный газ при 5500 об/мин, то промежуточные значения мощности можно получить (и реализовать на ведущих колесах) по-разному: меняя обороты коленвала, степень открытия дросселей и передачу.
    Не забудем и о всевозможных переходных режимах, когда меняются и скорость движения, и открытие дросселей карбюратора, наполнение цилиндров топливно-воздушной смесью, ее состав, давление, температура.
    Реальная жизнь нередко преподносит "сюрпризы". Трудно, наверное, поверить, что на пути из Тулы в Москву (около 200 км) обыкновенные "Жигули" способны почти полностью опустошить бак. Но когда хозяин-рекордсмен пустил двигатель, мы увидели тот самый, густо-черный дым из выхлопной трубы. Мотор, понятно, "троил", еле-еле работал...
    Беглое ознакомление сразу выявило замечательный "букет" неисправностей: игольчатый клапан позволял уровню топлива повышаться как угодно; воздушный фильтр был забит жирной грязью (видно, что его не меняли давным-давно!), зажигание работало кое-как (сильно обгорели контакты прерывателя), свечи - сильно закопченные и замасленные (давно пора менять уплотнения!).
    Для сегодняшнего разговора нам важны первые два факта. Не раз говорилось: из-за неисправного игольчатого клапана состав смеси может меняться произвольным образом - от нормальной до богатой и даже переобогащенной, когда мотор работает плохо или вообще останавливается. Не менее важно состояние фильтра (на него многие не обращают внимания, пока машина худо-бедно движется). Проделайте на исправном автомобиле такой опыт: когда двигатель полностью прогрет, закройте воздушную заслонку, вытянув кнопку "подсоса". Смесь обогатится настолько, что мотор, как правило, перестает тянуть и глохнет (кстати, такую ошибку часто допускают неопытные водители, забывая вовремя убрать "подсос").
    Забитый пылью, а еще хуже - замасленный воздухоочиститель все равно, что закрытая заслонка: разрежение в диффузорах карбюратора намного больше, чем нужно для нормальной работы, поэтому истечение бензина из жиклеров резко увеличивается. Поступление же воздуха уменьшается. Вывод вам ясен - фильтр нужно вовремя заменять.
    Что касается зажигания, важно понять, что при неисправной системе питания и переобогащении смеси скорость ее сгорания становится намного ниже требуемой, а характеристики центробежного и вакуумного регуляторов выбраны исходя из предположения, что карбюратор работает нормально! Для медленно горящей смеси опережение зажигания становится, таким образом, недостаточным: как при классическом "позднем" зажигании, еще больше падает мощность, смесь догорает в выпускной системе. Кто-то удачно сравнил мотор с хорошо сыгранным оркестром, – но здесь инструменты играют не в лад. Встречаются и другие причины переобогащения. Как правило, жиклеры первой и второй камер различаются производительностью, порой весьма сильно. Путать их нельзя, но люди это делают - по неопытности, невнимательности. Так, в карбюраторе 2105-1107010-10 диаметры отверстий главных топливных жиклеров равны 1,09 мм для первой камеры и 1,62 мм для второй. Главные воздушные жиклеры одинаковы.
    Если перепутать местами топливные жиклеры, то при работе первой камеры расход бензина окажется почти вдвое больше положенного, резко ухудшится тяговая характеристика, упадет мощность. Расход через жиклер второй камеры (если она вступит в работу) будет, наоборот, малым, а смесь - крайне бедной, что лишь усугубит падение мощности. На деле вторая камера в работу может и не вступить: плохо работающая первая просто не позволит двигателю выйти на режим, при котором включится пневмопривод второй камеры.
    Итак, богатая или, хуже, переобогащенная смесь - это всегда избыток бензина или недостаток кислорода воздуха. Кстати, для старого двигателя со сниженной компрессией и повышенным давлением картерных газов, что сопровождается выбросом в полость воздухофильтра копоти и капель масла, засорение воздушных жиклеров - дело обычное!
    С крайне бедными смесями мы сталкиваемся, когда по каким-либо причинам поступление бензина в карбюратор или отдельные его системы резко ухудшается, - мотор реагирует на это или провалами мощности (не тянет) или вообще глохнет при попытках дать ему даже небольшую нагрузку. Если, например, забит грязью уже упоминавшийся игольчатый клапан, возможна такая картина: пуск и работа на холостом ходу - нормальные, но тронуться с места и проехать десяток метров машина отказывается!
    Если подача бензина ослаблена, но не в такой мере, возможны другие "фокусы": при низких и средних нагрузках мотор работает нормально, но при попытке интенсивно разогнаться на полной мощности он вдруг "проваливает" - машина движется словно прыжками, пока не снизится нагрузка. В этом случае нужно искать помеху на пути бензина: забитый грязью бензофильтр, плохо работающий бензонасос, пробки грязи в топливной магистрали, включая игольчатый клапан, и т. д. Такая же картина получится, если плохо вентилируется бензобак, например, дренажная трубка засорена или смята. Знатоки иногда вот так "шутят" над своими приятелями! Небольшая пробочка в трубке - и ваш коллега надолго лишится покоя: машина у него не едет! Если при чистке карбюратора забудете вернуть на свои места воздушные жиклеры, смесь, понятно, станет бедной. Мотор кое-как будет работать, но прокатиться вам вряд ли позволит.
    O.у.К.Б
    Mr.Bandito$ - my best frienD

  9. #9
    CarTman Аватар для Sunnя
    Регистрация
    13.09.2006
    Адрес
    Квартал
    Сообщений
    1,492

    По умолчанию Ответ: тюнинг^техни4еский

    Знойный выдался денек, а тут еще пробка до самого горизонта! У многих моторы перегреваются, кипят. Умолкшие машины с поднятыми капотами, как печать на приговоре: чем их больше, тем безнадежней эта пробка! Очень часто к перегреву добавляется и отказ бензонасоса на карбюраторных машинах. Казалось бы, его задача самая простая - подавать бензин в поплавковую камеру в нужном количестве - и точка! Требуемое давление на выходе - всего около 0,3 кгс/см2. Впрочем, и его часто нет: при адской жаре под капотом топливо в бензонасосе начинает закипать, образуя паровую пробку, и он перестает работать. У предусмотрительного путешественника на этот случай припасены простые средства - бутылка воды и тряпка. Нужно хорошенько охладить насос, и он заработает вновь... Правда, в уличных заторах такая ситуация может повторяться - воду следует экономить!


    Рис. 1. Схема бензонасоса


    Как вы уже поняли, худо тому, кто не имеет представления об устройстве примитивного насоса и, следовательно, возможных его фокусах. Важно понимать: когда мы говорим о подаче топлива «в нужном количестве», это предполагает, что даже при максимальной нагрузке на двигатель топливо из поплавковой камеры не будет расходоваться быстрее, чем подается туда от бензонасоса. Иначе наступает крах: уровень снижается, мотор «вянет» на обедненных смесях, а потом начинает дергаться, глохнуть. Если уменьшение нагрузки нормализует его работу, можете быть уверены, что насос уже не способен обеспечить подачу топлива, достаточную для работы с высокой мощностью. Часто оказывается, что виноват не он, а, например, топливный фильтр, но мы сегодня говорим только о насосе.

    Рис. 2. Калибр для проверки выхода толкателя


    Чем же обычно объясняется его немощь? Вспомним, как он приводится в движение (рис. 1). Здесь два ключевых элемента: первый - вращающийся кулачок 1 валика привода маслонасоса (знаменитый «поросенок» на «Жигулях») или кулачок распредвала (на переднеприводных машинах ВАЗа). Второй - толкатель 2, упирающийся одним концом в кулачок, а другим в рычаг механической подкачки топлива 3. Последний поворачивает балансир 4, который оттягивает вниз шток 5 с диафрагмами, создавая в полости над ними разрежение и сжимая пружину 7. Впускной клапан 6 открывается, а выпускной (на схеме не показан) закрывается. Когда под действием пружины шток пойдет вверх, диафрагмы вытеснят порцию бензина через выпускной клапан в карбюратор. Просто? Но подводных камней много.
    Для правильной работы насоса важно, чтобы профиль кулачка не был нарушен износом, да и длина толкателя не уменьшилась. В противном случае производительность постепенно падает. Другой камешек - клапаны. Они изнашиваются, теряют герметичность и этим опять-таки снижают производительность насоса. Следующие в черном списке - диафрагмы, которые вытягиваются, в них появляются поры, трещины. О рваных и не говорим - тут уже бензин может вытекать не только наружу, но и в картер, разжижая масло, что порождает другие проблемы.

    "Поросенок" с канавкой износа на кулачке


    Говорят, замена насоса - минутное дело. Но один из моих клиентов за пять тысяч километров трижды (!) менял на «шестерке» бензонасос и только после этого обратился за помощью к нам. Всякий раз с новым насосом машина поначалу работала прилично, потом быстро «умирала» - насос почему-то недокачивал!
    Последний из троицы попал к нам. Проверили давление: насос «выдал»... 0,05 кгс/см2 при минимально допустимых 0,22 кгс/см2! Осмотрели и измерили толкатель. Он оказался короче на один миллиметр. Это плохо, но еще не смертельно - причина беды в чем-то другом. Сняв бензонасос, подключили мотор-тестер. Вот так штука - отличный насос! Давление на выходе 0,3 кгс/см2 и практически не падает. В чем же дело? Заглянем поглубже. Сняли с мотора проставку и с помощью зеркальца осмотрели кулачок «поросенка». А он такой, как на фото 1! Толкатель, словно резец, прорезал в сыром кулачке глубокую канавку. Вот вам и «простая операция» на полдня - без серьезного ремонта не обойтись.
    Установка нового бензонасоса порой требует кропотливой регулировки. Согласно требованиям ВАЗа, толкатель должен выступать над привалочной плоскостью проставки (с учетом прокладки толщиной 0,27-0,33 мм) на величину 0,8-1,3 мм. Но как это измерить? На глазок - отвергаем: есть риск не попасть «в допуск», и тогда насос опять-таки либо малоэффективен (машина отказывается развить полную скорость и т. п.), либо чересчур силен. Последнее - в чем-то даже худший вариант, так как поведение автомобиля многим даже понравится! Избыточное давление «передавливает» иглу поплавковой камеры, уровень топлива при работе двигателя (а не при регулировке!) растет, состав смеси становится богаче. Это может заметно улучшить разгонные характеристики машины. Но резко (на литры!) увеличивается расход топлива. И растет токсичность выхлопа. Вот это уже никуда не годится.

    Концы толкателей - нового и наклепанного


    Как же правильно поставить насос? Помимо того что обязательно нужно убедиться в исправности кулачка (см. выше), проверяем длину толкателя. У нового это 83,2 мм. Если концы изношены или один наклепан, как на фото 2, и толкатель стал уже на миллиметр короче, заменяем его новым, причем очень полезно предварительно закалить концы. Всякий новый насос проверяем на стенде: в первую очередь номинальное значение давления (0,22-0,3 кгс/см2) и как быстро оно падает после остановки насоса. При хорошем его состоянии эта величина - не более 0,04 кгс/см2 за 30 секунд. Если же больше, стоит снять крышку и проверить положение впускного клапана. Иногда из-за слабой зачеканки он просто вываливается из гнезда в корпусе. Можно восстановить крепление клапана, но все же лучше заменить насос. Нелишне знать, что в наши дни новый обходится дешевле ремонта старого!
    В заключение отмечу, что на рынке полным-полно бензонасосов (от фирменных до товара неизвестных производителей), жесткость рабочей пружины которых варьируется в широких пределах. В результате при одном и том же ходе толкателя производительность насосов и развиваемое ими давление могут очень сильно различаться. Отсюда практический вывод: подборка выхода толкателя (те самые 0,8-1,3 мм) может рассматриваться только как предварительная. Ее, кстати, можно облегчить, изготовив несложный калибр, показанный на рис. 2. Принцип обычный: одна сторона «проходная», другая - «непроходная».
    Конечный же результат проверяем по развиваемому давлению. Последнее нередко приходится корректировать подбором прокладок. Изменение их толщины «всего» на 0,3 мм существенно сказывается на величине давления, так что подбор верного положения насоса иногда занимает немало времени. Но результат окупит затраты!
    O.у.К.Б
    Mr.Bandito$ - my best frienD

  10. #10
    CarTman Аватар для Sunnя
    Регистрация
    13.09.2006
    Адрес
    Квартал
    Сообщений
    1,492

    По умолчанию Ответ: тюнинг^техни4еский

    Среди процессов, происходящих в двигателе, ключевую роль играет сгорание рабочей смеси. Если оно протекает неэффективно или с отклонениями от нормы, то неизбежно ухудшаются мощностные и экономические показатели двигателя, а в иных случаях возможно и аварийное разрушение его деталей.
    О сущности процесса горения и его аномалиях, о возможности диагностировать эти явления и делать необходимые выводы рассказывает кандидат технических наук В. БАСС.

    Как протекает горение.
    Нормальный процесс сгорания топливного заряда в цилиндре происходит следующим образом. Поршень приближается к верхней мертвой точке, рабочая смесь (пары бензина, воздух и какое-то количество остаточных продуктов горения) сжата. В нужный момент между электродами свечи проскакивает искра, и здесь образуется первичный очаг воспламенения объемом несколько кубических миллиметров, энергия которого складывается из энергии искры и энергии сгоревшего в этой зоне топлива.
    От первичного очага пламя начинает распространяться на окружающую рабочую смесь; фронт этого пламени имеет вид ламинарного (ровного, незавихренного) слоя толщиной меньше миллиметра, движущегося вначале с небольшой скоростью. Однако она быстро нарастает, поскольку остающиеся за фронтом сгоревшие газы, имеющие температуру около 2000°К, расширяются. Удаляясь от свечи, где рабочая смесь относительно спокойна (пристеночная зона), и приближаясь к центру камеры сгорания, пламя достигает турбулизованной (завихренной) зоны топливного заряда. Здесь фронт пламени начинает дробиться и приобретает ячеистую структуру, где участки горения перемежаются со свежей смесью и продуктами сгорания. Толщина такого турбулентного слоя становится равной нескольким сантиметрам, а скорость его распространения измеряется десятками метров в секунду, находясь в прямой зависимости от скорости движения газов внутри камеры.
    Нужно заметить, что нормальная работа двигателя в широком диапазоне частот вращения коленчатого вала обеспечивается именно тем, что скорость турбулентного пламени возрастает пропорционально увеличению скорости движения поршня. Когда же пламя проходит через весь объем камеры, горение в ней постепенно прекращается, а образовавшиеся горячие газы начинают расширяться, перемещая поршень вниз и тем самым, совершая полезную работу. Чем выше температура и давление этих газов, тем больше отдача мощности.
    Этот процесс обеспечивает наибольшую эффективность двигателя, расчетный уровень расхода топлива и токсичности отработавших газов. Но, к сожалению, так бывает не всегда. При определенных условиях ход процесса может нарушаться, вызывая разные по тяжести последствия - от неприятных ощущений у водителя до серьезного повреждения двигателя.
    Что влияет на процесс горения.
    Прежде всего, конечно, бензин, его характеристики, соответствие данному двигателю. Современный товарный бензин представляет собой сложную смесь разных углеводородов, а также специальных присадок. Кроме основного свойства — стойкости к детонации, что определяется октановым числом, бензин должен обладать и другим — не иметь склонности (разумеется, в определенных условиях и пределах) к самовоспламенению и калильному зажиганию, к нагарообразованию.
    Процесс сгорания существенно зависит от состава горючей смеси. Общая зависимость (при наивыгоднейшем опережении зажигания) такова: наибольшая температура и давление газов в камере сгорания достигаются при слегка обогащенной смеси. Дальнейшее ее обогащение и обеднение снижает температуру.
    Отклонение угла опережения зажигания от оптимальной величины тоже оказывает прямое влияние. Увеличение угла повышает температуру внутри камеры и может довести ее до уровня, опасного для расположенных там деталей. При позднем зажигании температура в камере снижается, но на выпуске - возрастает. Это, в частности, ужесточает тепловой режим работы выпускного клапана.
    Любой перегрев деталей, расположенных в камере сгорания, может нарушить нормальное протекание процесса горения топлива.
    Детонация.
    Появление детонации происходит по следующей схеме. При распространении фронта пламени несгоревшая рабочая смесь подвергается сжатию : сгоревшие газы позади фронта пламени действуют на нее подобно поршню. Если при этом давление и температура превысят критические для данного топлива величины, создаются условия для самовоспламенения, которое называют детонационным. Его характерный признак - взрывная скорость распространения пламени. Принято считать, что это явление связано с образованием перекисей в каких-то участках камеры сгорания под действием высокого давления и температуры. Данный химический процесс требует определенного времени, поэтому, как правило, он происходит в зонах, наиболее удаленных от свечи и дольше всего подвергающиxХxХxХ действию сильного давления. Способствует этому, и прогрев рабочей смеси горячими стенками камеры, что сильнее всего сказывается в узких щелях. Понятно также, что детонация тем вероятнее, чем выше степень сжатия. Когда часть заряда детонирует, образуются ударные волны, которые распространяются со скоростью до 1000 м/с и "бьют" в стенки камеры сгорания. Напрямую разрушить их они не могут, но передают часть своей кинетической энергии, вызывая местные перегревы и вибрацию. Если детонационное сгорание происходит достаточно долго, обгорают или разрушаются металлические детали, чаще всего поршень, свеча или клапан.
    Детонация наиболее вероятна, когда двигатель работает с полностью открытой дроссельной заслонкой, а частота вращения коленчатого вала мала. В этом случае наполнение цилиндров свежей смесью максимальное, остаточных газов мало, а время, в течение которого отдаленные от свечи части заряда подвергаются воздействию давления и температуры, наиболее велико и достаточно для образования перекисей. Наглядное проявление этого положения знакомо каждому водителю. Если во время разгона с малой начальной скорости при полностью открытой дроссельной заслонке отчетливо слышны звонкие детонационные стуки, то это лишь вначале, а при достижении определенной скорости они пропадают. Или наоборот, когда автомобиль движется на подъем с замедлением (дроссельная заслонка опять-таки полностью открыта), то вначале детонации нет, а при падении скорости до какой-то величины она может появиться. В подобных случаях для прекращения стуков достаточно прикрыть дроссель (уменьшить наполнение цилиндров) или перейти на пониженную передачу (ускорить вращение коленчатого вала).
    Характерными внешними признаками детонации являются повышенное дымление двигателя - черный дым из выхлопной трубы и падение его мощности из-за того, что горение протекает не лучшим образом.
    Калильное зажигание.
    В разговорах автомобилисты нередко путают его с детонацией, но это два совершенно разных явления. При калильном зажигании рабочая смесь воспламеняется накаленной поверхностью какой-то детали в камере сгорания. Теоретически различают два случая калильного зажигания: до возникновения искры в свече и после. Но дальше речь пойдет только о первом, поскольку именно с ним мы имеем дело на практике и именно он представляет реальную опасность для двигателя.
    При калильном зажигании горение протекает нормально, но преждевременно; это равносильно тому, что угол опережения самопроизвольно увеличился по отношению к оптимальному. А такое положение, как мы уже говорили, ведет к недопустимому росту температуры деталей в камере сгорания. Вследствие этого фактический момент зажигания становится еще более ранним, иными словами, процесс самоускоряется. При появлении калильного зажигания мощность двигателя внезапно и резко падает и , если не отреагировать на это снижением нагрузки, перегретые детали будут повреждены.
    Наиболее вероятно калильное зажигание от перегретой свечи; это бывает, когда свеча по тепловой характеристике не соответствует данному двигателю. Источником этого неприятного явления также могут быть выпускной клапан или поршень; им достаточна меньшая температура, чем у свечи, поскольку поджигающая способность зависит не только от степени нагрева, но и от величины поверхности детали. Чем больше площадь ее контакта со смесью, тем при меньшей температуре возникает калильное зажигание.
    Самые благоприятные условия для появления калильного зажигания - режим максимальной мощности, когда дроссель полностью открыт, а обороты предельные. Но для обычной эксплуатации это нетипично, с таким режимом в основном имеют дело спортсмены.
    Факторами, способствующими повышенному нагреву деталей в камере сгорания и , следовательно, возникновению калильного зажигания, являются: чрезмерно раннее искрообразование; мощностной, обогащенный состав рабочей смеси; плохое охлаждение цилиндров. Здесь же нужно упомянуть о вреде заусенцев в камере сгорания, особенно на электродах свечи.
    Вспышки при выключенном зажигании.
    Если калильное зажигание присуще работе двигателя в режиме максимальной мощности, то совершенно очевидно, что этим явлением нельзя объяснить его самопроизвольную работу в течение некоторого времени после выключения зажигания. В данном случае имеет место самовоспламенение топлива, подобно тому, как это происходит в дизелях. Наиболее характерна следующая цепочка обстоятельств. Автомобиль двигался в условиях, способствующих повышенному нагреву деталей двигателя.
    После остановки дроссельную заслонку закрыли, зажигание выключили. Коленчатый вал по инерции еще поворачивается, и в один из цилиндров попадает рабочая смесь, которая при медленном сжатии успевает прогреться до температуры самовоспламенения. За этим, естественно, следует рабочий ход, который вызывает протекание такого же цикла в другом цилиндре. Подобная медленная и дерганая, неравномерная работа двигателя продолжается от нескольких секунд до двух-трех минут (такие предельные сроки наблюдались), то есть до тех пор, пока остывание мотора не ликвидирует условия для самовоспламенения топливного заряда.
    Только ли нагрев камеры сгорания повинен в возникновении этого "дизельного процесса"? Нет, большую роль здесь играют нагретые отработавшие газы, в изобилии остающиеся в цилиндре от предыдущего цикла, ибо при очень небольшой частоте вращения очистка цилиндров крайне плоха. Эти газы смешиваются со свежей смесью, и сильно прогревают ее, способствуя самовоспламенению. Кстати, столь большое разбавление заряда остаточными газами исключает появление детонации, поэтому описываемый процесс, несмотря на всю свою неупорядоченность, для мотора безопасен. Но на водителя, как мы знаем, производит гнетущее впечатление.
    Радикальный способ борьбы с данным явлением - установка в карбюраторе электромагнитного клапана, отключающего подачу топлива через систему холостого хода при выключенном зажигании. Такие клапаны серийно устанавливаются на многих моделях "Жигулей". Другие, более простые способы основаны на самой сути процесса. Так, если после выключения зажигания ненадолго и глубоко нажать на педаль газа, то в цилиндры поступит полновесный заряд свежей смеси, который охладит стенки и устранит условия самовоспламенения. Примерно того же эффекта иногда достигают изменением регулировки холостого хода, но при этом нельзя отклоняться от пределов, обеспечивающих нормы токсичности выхлопных газов при обычной работе двигателя на холостом ходу.
    Влияние нагара.
    Все было бы достаточно просто, если бы аномалии, о которых говорилось, существовали каждая сама по себе. Однако тот факт, что на стенках камеры сгорания в той или иной степени всегда есть нагар, существенно искажает "классическую" картину.
    Дело в том, что отложения на стенках, во-первых, ухудшают теплообмен, а во-вторых - увеличивают фактическую степень сжатия. Иными словами, создают более благоприятные условия для срыва нормального процесса горения. Более того, нагар может оказывать известное каталитическое действие и вызывать самовоспламенение рабочей смеси, а это во многом затрудняет диагностирование аномалий.
    И еще. При переходных режимах работы двигателя нагар иногда начинает разрыхляться и расслаиваться; тогда частицы, потерявшие плотный контакт со стенкой, легко перегреваются и могут провоцировать калильное зажигание. Бывает и так, что чешуйки нагара отрываются, но какое-то время не выносятся из камеры сгорания, а остаются в ней. Они легко нагреваются и поджигают рабочую смесь в самый неопределенный момент даже на впуске. Так порождаются; "дикие" стуки, не поддающиеся никакой логике и классификации. Правильно учитывать все эти явления могут помочь только опыт и вдумчивый подход к вопросу.
    Для борьбы с отложениями (нагаром) в мировой практике получили широкое распространение специальные добавки к бензину, которые периодически вливают в бак. Ведется работа по созданию такой добавки и у нас. Пока же наиболее доступным средством борьбы с нагаром без разборки мотора остается "прожигание" камер сгорания при форсированном движении по автомагистрали. В качестве профилактической меры полезно строить свои повседневные маршруты так , чтобы городская езда чередовалась со скоростным шоссе.
    Что следует из теории.
    Вряд ли есть необходимость в каких-то развернутых выводах - они естественно следуют из самой сути рассмотренных положений. Но, видимо, краткое и пусть несколько упрощенное резюме все же может быть полезным. Оно сводится к следующему.
    Если во время форсированной езды по автомагистрали в двигателе прослушиваются какие-то непонятные стуки - это не детонация. Логичнее объяснить их самовоспламенением топлива из-за перегрева двигателя или обильного нагара в камерах сгорания.
    Если стуки появляются на переменных режимах, скажем, при городской езде, то не калильное зажигание тому виной.
    И, наконец, не нужно панически бояться вспышек в моторе после выключения зажигания. Но и терпимо относиться к ним не следует, способы прекратить их, были перечислены в тексте.


    ТОВАРЫ ДЛЯ ТЮНИНГА

    Тюнинг автомобиля

    ВЫБОР ЧАСА

    --Накладка на бампер Накладки
    подробнее
    --Ручка КПП Viper черный Ручки КПП
    подробнее
    --Фары моноблок BMW чёрные 4D (ангельские глазки). Фары
    подробнее
    --Накладка на передний бампер в стиле Hamann. Обвесы
    подробнее
    --BMW Накладка под фару E39 R Накладки на фары
    подробнее
    --Указатели поворота передние. Фары
    подробнее
    --Глушитель Sport VW GOLF II Глушители
    подробнее
    --Фары для VW. Фары
    подробнее
    O.у.К.Б
    Mr.Bandito$ - my best frienD

+ Ответить в теме
Страница 1 из 2 1 2 ПоследняяПоследняя

Информация о теме

Пользователи, просматривающие эту тему

Эту тему просматривают: 1 (пользователей: 0 , гостей: 1)

     

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения